Dihedral Rigidity and Deformation

Nina Amenta?, Carlos Rojasb

“University of California, Davis

bSan José State University

ARTICLE INFO ABSTRACT

Keywords:
shape space
dihedral angles
deformation
rigidity

We consider defining the embedding of a triangle mesh into ]R3, up to translation, rotation, and scale,
by its vector of dihedral angles. On the theoretical side, we show that locally the map from realizable
vectors of dihedrals to mesh embeddings is one-to-one almost everywhere. On the implementation
side, we are we interested in using the dihedral parameterization in shape analysis. This demands a way
to visualize statistical results, for instance an average shape. To this end, we give a heuristic method

for mapping interpolations in dihedral space to interpolations between input mesh embeddings, and
we visualize statistical analyses of several families of related organic shapes.

1. Introduction

Usually a polygon mesh is represented by its mesh com-
binatorics and a vector of 3D vertex coordinates, specify-
ing the immersion of the mesh into R3. A polygon mesh
is rigid when the only motions of the vertex coordinates for
which the faces are not deformed in any way are the rigid
motions (rotation and translation). Non-rigid polyhedra do
exist [Bri97, Con77, Con79], although they are rare; a non-
rigid polyhedron has some flexing motion in which the faces
move but do not deform. That is, the dihedral angles be-
tween faces change continuously while the faces themselves
remain rigid. Herman Gluck [Glu75] proved

Theorem 1 (Gluck). A generic immersion of any mesh topol-
0gy homeomorphic to the sphere is rigid.

By generic we mean all vectors of vertex coordinates, except
some “degenerate" subset of measure zero. So, for example,
if you construct the edge-skeleton of a triangulated surface
such as the Stanford bunny, with rigid stick edges held to-
gether at flexible joints, it will almost certainly be rigid.

Mesh deformation is an important topic in computer graph-

ics, computer vision and scientific shape analysis. Typically,
both edge lengths and dihedrals change during deformation.
The change in edge lengths defines a path in the space of
discrete metrics. The subset of discrete conformal trans-
formations in the space of discrete metrics has been espe-
cially well-studied, eg. [BPS15, SA07, BLL15, ZLL*15].
Lam and Pinkall [LP18] recently proved that infinitesimally
rigid polyhedra always allow infinitesimal conformal defor-
mations, and that the space of these deformations can be pa-
rameterized by a discrete curvature function defined on the
vertices. But discrete metrics do not correspond to 3D shape
in any precise sense: a vector of edge lengths typically has
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multiple discrete realizations as a rigid mesh, and it might
even correspond to a flexible polyhedron.

We are interested in the complementary approach: char-
acterizing deformation by the change in a mesh’s vector of
dihedral angles. The first mathematical question one might
ask is whether there are motions in which all the dihedral
angles stay the same, but the edge lengths change. This is
trivially possible; consider a cube deforming into an arbi-
trary box. Notice that during such a deformation the inner
face angles (plane angles) remain unchanged. So next we
ask if there are deformations in which the dihedral angles
remain fixed, but the inner angles change; we can call this a
dihedral flex. We say that a polyhedron which does not allow
a dihedral flex is dihedral-rigid. 1t is not known if dihedral-
flexible polyhedra exist. In the first part of this paper, we
prove the following analog of Gluck’s theorem:

Theorem 2. A generic immersion of any triangle mesh home-
omorphic to the sphere is dihedral-rigid.

While interesting as a result in rigidity theory, of course this
is only a small step towards a theoretical justification of the
idea of representing mesh embeddings by their dihedral vec-
tors. In the second part of the paper, we give some exper-
imental evidence that the dihedral representation is a use-
ful and natural shape space. Let’s define the combinatorial
structure of the mesh with the graph (V, E), so that the di-
hedral vector is a point in RIZ!. Given an input data set of
corresponding meshes, we analyzed them using the normal
statistical techniques and software as points in RF!, using
the usual Euclidean metric. Working in a Euclidean space
has obvious advantages, such as simplicity and flexibility.

Before we can do this analysis, however, we need to have
a set of shapes represented as different embeddings of a com-
mon combinatorial mesh. This can be produced from, and
is roughly equivalent to, a dense surface correspondence be-
tween all of the input specimens. While correspondence
problems are famously difficult, there has been terrific re-
cent progress on the problem of computing a common cor-
respondence for a family of similar input shapes, particular
through the use of functional maps [OBCS™ 12], and recently
by using deep learning as well, eg. [BMRB16].
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Probably the most common approach to shape analysis
uses the usual representation of an embedding by its aligned
vertex positions. An input set of vertex correspondences is
aligned as well as possible, and then treated as points in
R3V!. This gives a Euclidean shape space, with the root-
mean-square distance (also known as Procrustes space). We
will compare the two Euclidean shape spaces, dihedral and
Procrustes, in Section 6.

To visualize results of a statistical analysis in shape space,
such as an average or a PCA vector, we need to be able to
construct a mesh embedding for an arbitrary new vector of
dihedrals. This problem appears to be very difficult. Instead,
we visualize the results of operations such as averaging and
PCA using a heuristic method to interpolate embeddings.
We use two algorithms, first a heuristic to get an approximate
embedding and then an optimization algorithm to reduce the
total error of the dihedrals.

Using this approach, we find that lines or planes in dihe-
dral space lead to smooth spaces of natural-looking morphs
connecting sometimes very different shapes. We take this as
evidence that the dihedral metric is a good measure of what
we intuitively mean by shape difference. Specifically, the
morphs are smooth and the shapes of parts that differ by a
rigid motion interpolate via a rigid motion. In earlier work
[RTH* 14], we found that attempting to optimize the embed-
ding towards interpolated edge lengths, rather than interpo-
lated dihedrals, produced morphs with discontinuities and
glitches. We believe that this is related to the fact that, out-
side of very simple examples, a specific set of edge lengths
does not have a single unique embedding. We conjecture
that there is at most one embedding per vector of dihedrals.

2. Related work

In 1968, Stoker [Sto68] conjectured that a convex poly-
hedron is uniquely defined by its combinatorics and dihe-
dral angles, that is, that it is dihedral-rigid. This would be
the dihedral version of Cauchy’s theorem on the rigidity of
convex polyhedra [Caul3]. A fairly simple proof of Stoker’s
conjecture for triangulated convex polyhedra was given by
Pogorelov [Pog02]; we draw on his work as well as that of
Gluck. Only recently was a complete proof of Stoker’s con-
jecture provided by Mazzeo and Montcouquiol [MM™11],
using much more sophisticated techniques and applying to
the interesting case of ideal hyperbolic polyhedra as well.
The Maxwell-Cremona correspondence, a classic construc-
tion from mechanical statics, relates infinitesimal edge-length
flexes to dihedrals in a “lifted" structure; an interesting mod-
ern presentation, related to a projective Grassmannian frame-
work, can be found for example in [CW82] . We are indebted
to the excellent online textbook by Pak [Pak10] for much of
the background in this area.

In computer graphics, there is an ongoing interest in con-
structing shape spaces in which geodesic paths correspond
to physically natural-looking morphs, which can be used for
applications such as artistic modeling, shape exploration, and
deformation transfer. These spaces tend to be curved and dif-

ficult to deal with, eg. [KMPO7]. A recent series of papers
[HRS* 14, HRS* 16, ZHRS15] explores the curved shape space
implied by the elastic energy of a deformation, which is the
sum of a membrane term depending on edge lengths and a
bending term depending on dihedrals. They prove [HRS™ 14]
that it forms a Riemannian manifold, that is, that the bend-
ing term and the membrane term cannot both be zero un-
der a non-rigid deformation, which means that there are no
elastic-energy flexible polyhedra. Using this energy as a
metric, they produce shape averages, principal components
and splines in “shell space". Each of these operations in the
curved shape space proves to be challenging, both mathe-
matically and computationally.

There is a practically successful line of work [BLLIS5,
KGO8, WDAH10] on interpolating mesh embeddings by in-
terpolating both their dihedral angles and their edge lengths,
and then doing a least-squares reconstruction to produce an
interpolating mesh. These methods cannot realize both the
dihedrals and the edge lengths exactly - there are roughly
6|V | parameters and 3|V | degrees of freedom in the embed-
ding - but they are fairly simple to describe and implement
and they produce very nice-looking results. Our first, rough
embedding algorithms belongs in this family of techniques.

The space of dihedral angles was proposed as a represen-
tation for deformation by Paillé et al. [PRP*15], albeit for a
tetrahedralized volume. Again, the number of dihedrals in a
tetrahedralization is much larger than the dimension of the
space of realizable meshes, so in general only an approxima-
tion of a given set of dihedrals is possible.

Finally, an interesting experiment in [IGGO1] showed
that ignoring both edge lengths and dihedrals and just us-
ing connectivity to reconstruct shapes can be surprisingly
successful.

3. Dihedral rigidity

One’s first instinct when considering the possibility of a
dihedral flex is to consider the vertex positions p; as func-
tions p;(t) of some parameter . Then we can consider a tri-
angle (Pj, PP j+1) and the derivatives, with respect to ¢, of
its inner angles, eg. f;; ;. and edge dihedrals, eg. «; ;.
At any time along a traditional edge-length flex, the length
derivatives / I’J = 0 at every edge, while at least some of the

a{ ~are non-zero. Similarly along any dihedral flex (if such a
thing exists!) we expect to find an infinitesimal motion such
that all alf ;= 0, while there are inner angles for which the

derivatives f’ Ll
admits such a motion dihedral infinitesimally non-rigid.

A polyhedron which is dihedral non-rigid must be di-
hedral infinitesimally non-rigid. It may well be possible,
however, for a polyhedron to be dihedral infinitesimally non-
rigid while being rigid; we know that there are many poly-
hedra which are (Iength) infinitesimally non-rigid, but actu-
ally rigid. Following Gluck, we prove here that a generic
immersion of a mesh forms a polyhedron which is dihedral
infinitesimally rigid, and hence dihedral rigid.

We need to formulate equations that express the fact that

are non-zero. We call a polyhedron which
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a given mesh configuration allows an infinitesimal dihedral
flex. Fortunately, working with derivatives is a good way to
linearize a problem!

Constraint on rotations around a vertex

There is a very nice relationship between the derivatives
of the dihedral angles a’ and the derivatives of the triangle
inner angles f’; Gluck used it in his theorem on length rigid-
ity, and we shall too. We have, going around the one-ring of
any vertex p;,

’ > ’ - _
Z %;eij Zﬂj,i,jﬂnj»hl‘*'l =0 @
J J

where #i;; ;. is the normal to triangle ¢;; ;,, and €;; =
(p; —p)/11p; — p;|| is the unit vector in the direction of edge
e;;- This equation expresses the fact that the instantaneous
angular velocities in the one-ring have to change in a coordi-
nated fashion for the one-ring to continue to “hold together".

Since the edge and normal vectors have three coordinates
each, this gives us three equations at each vertex, for a total
of 3|V|. Let’s call these the vertex equations.

Gluck considered the case in which the change in edge
lengths, and hence the inner angle derivatives f’, are all zero,
so that the edge length infinitesimally non-rigid configura-
tions were those with

Z al i ¢; =0
J

This system has 3|V'| equations in | E| = 3|V | — 6 variables,
for a mesh homeomorphic to a sphere.

We make the opposite assumption, that the dihedral an-
gles @ remain unchanged, so we are interested in non-zero

solutions to
/ = _
Z ﬁj,i,j+1"j,i,j+l =0
J

In our case we have 3|V | equations in the 6|V'|— 12 variables

B

Angular momentum around a vertex

While Equation 1 is well-know in, for instance, physics
and robotics, we provide a derivation here for completeness;
readers familiar with, or uninterested in, this material can
feel free to skip this section.

Let the matrix R, perform the rotation through the through
the origin with axis @ = (a,, a,, a;) by angle a. Let’s think
of this as a rotation with speed a. At time ¢, the position of a
point p affected by the rotation is p(f) = R,(t)p, where R ()
is the rotation through a by angle ra. The derivative

dp(t) dR,(1)
7 = d—i‘p = C()a X Ra(t)p = SaRa(t)p
where w, is the angular velocity vector (aa,, aay, aa,), that

is, the axis a scaled by the speed a of the rotation, and the

anti-symmetric matrix

0 —ar, ar,
S, =| ar, 0 —ar,
—ar, —ary, 0

is the matrix that performs the cross-product. So the deriva-
tive of R,(?) is S,R,(1).

Now let’s consider the derivative of a series of rotations.
Say

Rd = RaRbRC'
We get
R _ Rip r+r,DLop 4R R,
dt  dr e e gy e TeThygy
Sde = SaRaRbRc + RaSbRbRC + RaRbSCRC

Applying S; R, to point p, and expressing it in terms of the
angular momentum vectors, we see that w,; X R, p, is

w,XR,RyR,p+(R,w,)X R, Ry R, p+(R,Ry,)XR,RyR,p

Here we are using the fact that R(g X p) = Rg X Rp, where R
is a rotation matrix. Just looking at the angular momentum
vectors, then, we have

w; =w,+ (R,0p) + (R,Ry»,)

Recall each vector @ was defined in its own local coordinate
system. The rotations in this formula transform them all into
a single global coordinate system. Equation 1 is a specific
example of this formula, in which the sequence of rotations
are those performed by a particle traveling in an infinitesimal
circle around vertex p; of the mesh; the terms have been re-
arranged to group together the dihedral angles and the inner
angles.

Constraints on inner angles

There are additional constraints on the ' variables which
determine the validity of the mesh. One is that the sum of the
inner angles of any triangle add up to z. Taking the deriva-
tive of this condition is gives us

B+ B +B,, =0

We call these the face equations.

Finally, the Law of Sines implies the following differen-
tial cotangent formula for the triangles around a given one-
ring

, ' -
Z(cot ﬂi,j,j+1)ﬂi,j,j+1 — (cot ﬂi,j+l,j)ﬁi,j+l,j =0
J

We call these the cotangent equations. To see this, let p; be
a vertex, and consider the vertices of its one-ring, p 5Dl
etc. Using the Law of Sines, we have

Sinf; j jy1 . lijr

sinfjr; 0 iy
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Going around the one-ring,

I .
i,j+1
L
Jj ij
and so )
SINP; j j+1 -1

j S0P
Taking the natural logarithm, we have

Zlnsmﬁ,wH —lnsmﬁ,-’jﬂ,j =0
J

Next we take the derivative. We have (Inx)) = 1/x and
(sinx)’ = cos x, so we get

» cos Bijj+1 cosfijilj o  _
: i,j,j+1 T e ij+l,j —
= SIN g TSI T

which give the cotangent equations.

Condition for a solution

Together, the vertex equations, face equations and cotan-
gent equations form a system with 3V +2V —4+V = 6V -4
equations in 6V — 12 variables.

Mp =0

A mesh is dihedral infinitesimally non-rigid if this system
M has some non-zero solution for the fs, that is, if there
is an infinitesimal motion of the mesh that leaves the dihe-
drals fixed but allows the inner angles to flex somehow, while
maintaining a valid mesh.

Following Gluck, we observe that there is a non-zero so-
lution for g if and only if the coefficient matrix M has rank
less than 6V — 12. And for this to be true, it must be the
case that every 6V — 12X 6V — 12 sub-matrix of M has zero
determinant. We can write this condition on the coefficient
matrix itself as a system of (61/8_4) polynomials in the matrix
elements; call this system F. In Gluck’s proof, he dealt with
a matrix whose coefficients were themselves polynomials in
the vertex coordinates of the mesh, and this allowed him to
argue that the resulting variety formed a set of measure zero.

In our case, the coefficients are the face normals, the
cotangents of the inner angles, and the scalar value one. The
normals and cotangents are not polynomials in the vertex
coordinates. To get around this, we treat the normals and
cotangents as variables themselves; for notational clarity, let’s
write ¢;; i, = cot f;; ;1. The ¢ and n variables are not in-
dependent of each other. The normals must all have length
one; forn;; i\ = (ny,ny,n;), we have

n§+ni+n§=1 )

In addition, the normal and cotangent variables are conve-
niently related to each other, and to the vertex coefficients,
by the following formula:

[(p; —p;) X (p; —Pj+1)] Ciij+l =

(3)
[(Pi -pj)- (i — Pj+1)] Njij+1

This formula relates the cotangent to the scaling of the cross-
product to form the triangle normal. To see this, observe that

Pi=p)X(p;i=pjs1) = Ilpi=p;I11pi=pji I SIN B} jin;; jy

We also know that

(i —pj) - i = pjw1) = 1P = pjlllIpi = Pjyrll cOS B ; i

So we can write
[(p; — pj) X (p; = pjy1)1COS B} in1 =

((pi —pj) - (p; — Pjp)ISING; ;g

and hence
[P = p)) X (Pi = pjr)1COL B iy =

[(p; — Pj) ~(p; — pj+1)]”j,i,j+]
Since the cross-product and dot-product are both polynomial
functions, this formula is a polynomial as well.

In order for a mesh configuration to be be dihedral in-
finitesimally non-rigid, we need Equations 2 and 3 to be true
for every angle, as well as for all of the sub-determinants
of M to be zero. These conditions are all polynomial, and
they define a variety (the intersection of their zero-sets) in
the space of the p, n, ¢ variables.

An arbitrary assignment of values to p, n, ¢ does not cor-
respond to an immersion of the mesh; the p-variables are all
free, but the » and ¢ will not obey Equations 2 and 3. Given
a choice of p variables, the n and ¢ variables of that embed-
ding uniquely satisfy 2 and 3 (that is, the normal is indeed
the cross-product, scaled as required). So there is a unique
lifting of the Euclidean space defined by the vertex coordi-
nate space p into (p, n, ¢)-space. Let P be this lifting of the
the vertex coordinate space, which is Euclidean. The space
P is similarly simply connected and 3n-dimensional.

If we have a connected component of an algebraic variety
and we add an additional polynomial constraint to the sys-
tem, either the the whole component satisfies the new equa-
tion, or the dimension of the new variety is reduced by the in-
tersection with the new equation. Thus, if there is any point
of P which does not also satisfy the system F verifying that
a configuration is rigid, the set of common zeros (the space
of dihedral infinitesimally non-rigid polyhedra) has smaller
dimension than P, and forms a subset of measure zero in the
space of possible configurations.

So all we need to do to show that the dihedral infinites-
imally non-rigid polyhedra form a set of measure zero is to
display some point in P which is not in F; that is, a dihedral
infinitesimally rigid polytope. As it happens, we can do this
for every mesh topology; the results of Pogorelov [Pog02]
and Mazzeo and Montcouquiol [MM*11] show that every
convex polyhedron is dihedral infinitesimally rigid, and we
know that every mesh topology can be realized as a convex
polyhedron (this is Steinitz’ theorem). This completes the
proof of Theorem 2.
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Figure 1: Three examples of morphs between different shapes. The twisting of the wrench is handled nicely by considering
dihedrals. The poses of the cat are interpolated naturally, without distortion in the intermediate shapes. The dinosaur and the
camel have the same mesh topology, but are very different embeddings.

4. Visualizing dihedral interpolations

In the following, we will experiment with treating the
dihedral vectors for a given mesh topology as a Euclidean
shape space, doing arithmetic in that space and visualizing
the results. For instance, Figure 1 shows smooth interpola-
tions between different configurations of some models from
computer graphics, computed by linearly interpolating the
dihedral vectors from one shape to that of the other, and pro-
ducing a mesh approximating the interpolated dihedrals at
each point. Videos of these smooth morphs can be seen at
https://vimeo.com/270302684.

The space of possible shapes formed by embedding a tri-
angulated surface had dimension 3|V'| — 7, that is, the num-
ber of mesh vertices modulo the seven-dimensional transfor-
mation space of rotation, translation and scale). A triangle
mesh homeomorphic to the sphere has 3|V| — 6 dihedral
angles, one extra, so we do not necessarily expect the in-
termediate linearly-interpolated dihedral vectors to exactly
correspond to embeddings; and, sadly, the dihedrals do not
happen to lie in in a linear subspace. One easy way to see
this is to consider the seven ways a tetrahedron can be flat-
tened into the plane; each coordinate in one of these seven
dihedral vectors is either O or 7, and they form a matrix of
rank six.

Our plan is to nonetheless treat the dihedral space as Eu-
clidean, perform statistical operations, and then visualize the
results by producing embeddings that approximate the inter-
polated dihedral vector. This can be thought of as a projec-
tion to the subspace of realizable dihedrals, although we do
not guarantee that we find the closest such point.

Our main tool to compute an embedding is a least-squares

algorithm, Algorithm 1, that constructs an embedding, given
two inputs: a vector of dihedrals and a vector of edge lengths.
In the following section, we also give a refinement algo-
rithm, Algorithm 2, that begins with this initial embedding
and reduces the error of the dihedral vector at the expense
of the edge-length error. While this second algorithm does
reduce dihedral error, it does not give noticeably better vi-
sualizations and so most of our experiments are visualized
using Algorithm 1 alone.

Algorithm 1: Embedding

Constructing an embedding from a vector of dihedrals
and a vector of edge lengths is a well-explored problem, and
our approach in Algorithm 1 borrows ideas from other pre-
vious algorithms, particularly [BLL15, KGO8, WDAH10],
and, computationally, [LSLCOO05]. The input is the mesh
topology, a vector of edge lengths, and a vector of dihedrals.
There is no requirement that either the edge lengths or the
dihedrals can be realized nor that both vectors can be real-
ized by the same embedding. The output is an embedding
that attempts to fit both edge and dihedral vectors.

First, at each vertex p;, we construct a least-squares ap-
proximation to its star (the set of triangles containing p;),
achieving the desired dihedrals but introducing error in the
edge lengths opposite p;. We also define an arbitrary or-
thonormal coordinate system F; at each vertex p;. For ev-
ery two stars at p; and p; connected by an edge e;;, we find
the three dimensional rotation R;; that takes F; to F; when
the two stars are merged along edge e;;. This gives us a ro-
tation associated with each edge. We use these rotations to
solve for a coordinate system G; at each vertex, that is, an
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orthonormal set of vectors in the global coordinate system,
representing some rotation of F;, by solving the system of
equations:
min )’ ||G;Ry; ~ G; |7
e;j

where || - || p indicates the Frobenious norm. This is a least-
squares solve for the Gj;, from the fixed R;;. An arbitrary
G; is set to the identity. If the R;; are consistent with some
mesh, the resulting G; would be a consistent set of orthonor-
mal coordinate systems (or equivalently, a set of rotation ma-
trices). But the R;; may not be consistent with any set of
global rotations (because all the stars adjacent to each ver-
tex do not match up perfectly), so we typically end up with
G; that are not actually orthonormal. Following [Mao86],
we correct these using the singular value decomposition. We
then use the G; matrices to reconstruct vertex positions, again
by least squares:

min ) |(p; = p;) = G;pyy1 I

¢

Here p;; represents the position of the copy of vertex p; in
the original local coordinate frame F; at p;; as transformed
by the rotation G, it should be equal to p; — p;. The resulting
coordinates p; give the mesh embedding.

Algorithm 2: Dihedral angle refinement

For refinement, we use an iterative algorithm, similar in
spirit to the popular as-rigid-as-possible interpolation method
[SAO7]. We define an energy function E on the mesh, which
considers both the normal vectors 7, and the vertices p;.

- - 2
E=a) [[Myf, — i3+
adjacent triangles ./

B Y N Lii = p)) = g2 “)
edge i,j
triangle k

Here 7i,, is the normal of triangle k and 7, is the normal of
triangle /, adjacent across edge i,j. The matrix M, is a
rotation by exactly the desired dihedral angle ;; between 7
and 7, with the axis of rotation ¢;; = (p; — p;)/l|p; — p;|l.
Thus the first energy term measures how well the normals
achieve the dihedral angles at every edge. The second term
measures how well the normals and vertices agree with each
other. The matrix L, ;, takes edge i, j into the normal of
one of its adjacent triangles k. It is the product of a rotation
by 7z /2, along with a scaling to normalize the length. We
use the weights are @ = 0.6 and g = 0.4, which we selected
experimentally.

At each step, we recompute M and L from the current
mesh, solve for new 7, while keeping the p; fixed, and finally
solve for new values of p;, repeating until convergence (see
Figure 3).

We see that this algorithm succeeds in reducing the dihe-
dral error of the interpolations by about half. We define the

Dihedral Error

1000
900
800 — initialization
700 algorithm
600 dihedral error
500
400
300
200
100

0

refinement
algorithm
dihedral error

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 100

Time (0=Camel, 100=Dinosaur)

Figure 2: Dihedral error reduction due to the refinement step,
for the camel-to-dinosaur morph. The vertical axis is total
dihedral error in radians. The horizontal axis is the time over
which the morph occurs.

Convergence Between Intialization Methods

12 3 456 7 8 91011121314151617 18 19 20 21 22 23 24 25 26 27 28 29 30 31

— |EEST-5Q

nput mesh

Figure 3: Convergence when using one of the input meshes for
initialization versus Algorithm 1.

dihedral error simply as the Euclidean difference between
the desired interpolated dihedral vector and the actual di-
hedrals achieved by our embedding; an example appears in
Figure 2. When using one of the input shapes as the initial-
ization mesh, we found that the refinement energy function
took more iterations to converge and it did not achieve the
same minimum error, as shown in Figure 3.

5. Shape analysis: Human body shapes

This section shows some experiments with shape analy-
sis in the dihedral space, on some well-known collections of
three-dimensional triangulated meshes of human body shapes.
The meshes in each set are combinatorially identical.

We use the following approach for all of the output visu-
alizations. First, we compute an average set of edge lengths
E for the entire input collection. Then, for every dihedral
vector ¥, we want to visualize, we we use Algorithm 1 to
create an embedding approximately realizing V) and E. This
ensures that differences that we see in the visualizations de-
pend only on V}, and not on E.

We begin with the ground-truth subset of the MPI FAUST
dataset. The entire FAUST dataset include 300 human 3D
laser scans in a wide range of poses [BRLB14], and it is in-
tended as a benchmark for registration methods. Its ground
truth subset is given as a set of embeddings of a single topo-
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logical mesh, representing 10 subjects each in 10 different
poses, labeled by subject and pose. Each mesh has approxi-
mately 7,000 vertices.

In the dihedral space, we used PCA to reduce the di-
mensions of the ground-truth dataset; a scatterplot on these
first two principal coordinates is shown at the top in Fig-
ure 4. There are two obvious clusters, corresponding to gen-
der. That is, in dihedral space the most salient features are
those that reflect body shape rather than pose or size. This
is not at all true in Euclidean Procrustes space formed by
the 3|V| vertex coordinates. Quite large changes in shape
can be visualized by varying only the dihedrals, not the edge
lengths.

Variation of the body shape along the first principal com-
ponent in dihedral space is shown at the bottom of Figure 4.
Figure 5 shows a similar visualization but focuses on the
males in the dataset; without the significant male-female body
shape variation, pose becomes the most significant compo-
nent. All of the shapes representing different values of the
principal component are natural-looking poses, without dis-
tortion. Again, it is well-known that this would not be the
case in the Procrustes space.

Within the Euclidean dihedral space, we can apply sim-
ple vector space operations. In Figure 6, we capture pose
variation via dihedral space vector operations on the human
subjects from the FAUST dataset, by removing variation based
on the body-shape of the individual subjects, leaving only
variation based on pose. First, we produce a per-subject av-
erage body shape A;,i € [0, ...,9] for each of the ten sub-
jects. We subtract the overall average A of the entire dataset
from each A; to produce a per-subject body-shape offset.
Next, for a given scan S; ; of subject i in pose j, we subtract
the per-subject offset, such that the residual vector of dihe-
drals P, ; should represent the average person demonstrating
subject i’s realization of pose j:

Pi,j = Si,j —-(4;,-A4) 5)

Figure 6 plots these pose examples P, ; using the first two
principal components (just for poses j € [5,...,9]; poses
0-4 were omitted for clarity, since it is hard to see all ten
clusters in a 2D projection). We can see that this residual
pose data indeed reveals five distinct clusters. On the right,
we visualize three poses from the same cluster, all of which
have the average (hermaphrodite) body shape.

Finally, we examine The Human Body Models collec-
tion, which is derived from the CEASAR dataset. It contains
1,500 registered male and female meshes with a vertex-to-
vertex correspondence [YYZ14]. This dataset differs from
the FAUST dataset in that the subjects are all in (roughly)
the same pose (they were collected this way so that the Pro-
crustes space could be used for shape analysis). Each mesh
has approximately 12,000 vertices.

Again, the first principal component in dihedral space
shows the variation between the male and female subjects,
see Figure 7, and the second principal component captures

FAUST Dihedral Angles

(a)

-3STD
2 2 e @
PC1 ia % a ‘ﬂ\'
(b)
Figure 4: The top principal component in dihedral shape space
for the FAUST human body shape data describes the fun-
damental shape difference between male and female bodies.
When we plot the first two principal components (a) we clearly
see the separation between the group of male and female sub-
jects. In Figure (b) we warp the average shape in the direction
of the first principal component, by adding multiples of it to
the average shape. All of the figures are reconstructed using

the same edge lengths. Each edge length is averaged over the
whole input set.

-2STD -1STD AVG 1STD 2STD 3STD

2 2 2
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Figure 5: The top two principal components of just the males

from the FAUST dataset. This visualization shows the varia-
tion in pose.

one of the slight variations in pose, which is mostly a differ-
ence in stance width.

6. Shape analysis: Comparison of Euclidean
shape spaces

To do shape analysis on a set of mesh embeddings us-
ing Procrustes space (aka root-mean-squared distance), we
begin by aligning the meshes as well as possible to reduce
the effect of rigid motions and scale. The generation of a
mutual alignment for a shape collection is known as gener-
alized Procrustes analysis (GPA). As illustrated in Figure 10,
Procrustes space is widely known to be inappropriate for the
analysis of shape collections in which individual parts dif-
fer by large rigid motions, even after the models are rigidly
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Figure 6: On the left we removed the individual specific fea-
tures from each mesh in the FAUST data using simple linear
algebra in dihedral space. Plotting the first two principal com-
ponent values of the residual shows good clustering by pose.
On the right, three of the residual models in pose 9, corre-
sponding to the three of the pink points. Like most of the
models in this section, these are all reconstructed using the
average edge lengths over the whole dataset. We see that
the residual body shapes are slightly different, but close to the
average. The similar body shapes emphasize the difference
in how the three people struck the pose, as opposed to the
appearance of the three subjects.

-3STD -1STD AVG 1STD 2STD 3STD

M
A

Figure 7: The first two principal components in dihedral space
of the Human Body Models dataset. As with the much smaller
FAUST dataset, the first component corresponds to gender.

The second corresponds almost entirely to the small differences
in the pose adopted by the subjects.

-2STD

aligned. The twisted wrench is an extreme example, but the
rigid motions of parts exhibited by articulated figures such
as humans and animals occurs all the time. Procrustes space
is, however, widely used for the comparison of shapes where
pose is less of an issue, especially in medical imaging and
anthropology, and in facial animation (“blend shapes").

A related theoretical problem with Procrustes space is
that the best mutual alignment of the entire set of models
only approximates the shape distances given by the best-
possible alignments of each pair of meshes. The “correct”
shape space realizing the pair-wise distances is a curved sub-
space of R3V1,

To compare dihedral space with Procrustes space, we
looked at principal components on two examples in which a
good mutual alignment is possible (so that Procrustes space
can be used). The first is a set of human face scans gathered
by Notre Dame for their 2002 facial recognition contest, dis-
tributed by NIST. Each facial scan is labeled with a facial

Dihedral Angle Distance

LR # Macaque
m Baboon
o . Mandrill
Figure 8: Three species of Old World monkeys. Macaques

have a long snout while Baboons have a short snout. Mandrill
has a long snout and it is distantly related.

Figure 9: In dihedral space, the first principal component of the
monkey cranium data clearly differentiates the mandrill from
the macaques and baboon. We see a mandrill (bottom left)
and a baboon (bottom right) cranium, along with the average
cranial shape (including the short-nosed macaques) in dihedral
space (bottom middle). The top cranium is the average of
the mandrill and baboon where red indicates regions that vary
significantly along the first principal component.

expression.

We took a sub-collection of paired scans, each showing
the same person with both a happy and a sad expression, and
computed the top three principal components in each space.
Interpolations along these principal components are shown
in Figure 11. Here Procrustes space does the better job of
separating expression into the first principal component and
face shape into the others, although dihedral does this as well
to some extent.

A second example, in which dihedral space provides more
useful information, is a collection of Old World monkey cra-
nia, provided by the New York Consortium on Evolutionary
Primatology. The collection is made up of four species of
baboon, six species of macaque, and a mandrill. Baboons
and macaques are closely related species, but baboons have
long noses, and macaques have short noses. Mandrills are
long-nosed monkeys that are more distantly related to the
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Figure 10: Linear interpolation between a wrench and a twisted wrench in Procrustes space; compare with linear interpolation in
dihedral space in Figure 1. Interpolated shapes lose parts of the model.
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Figure 11: Visualization of the top three principal components of the face data in dihedral space and Procrustes space. While
both dihedral space and Procrustes space capture the variation between happy and sad faces as the first principal component,
the dihedral space (or at least our visualization of it) is less emphatic. In the second component, Procrustes space focuses on

wide vs. narrow faces, while dihedral space only captures differences in features and and expression.

other two species.

In Figure 8, we see in the projection to the first two prin-
cipal components that mandrill crania differ in shape from
macaque and baboon crania. Because they are both long-
nosed, the Procrustes distance from baboon to mandrill is

less than the Procrustes distance between baboon and macaque;

that is, the dihedral distance does a better job of capturing
the subtle evolutionary shape similarity between baboons
and macaques which is obscured in Procrustes space by the
larger-scale difference of long- vs short-nosed cranium. High-
lighting the areas in which the dihedral distance is greatest in
Figure 9, we see the shape of the eye sockets, ridges behind
the eye sockets, and the shape of the snout. Looking at the
first three principal components in Figure 12, we see these
shape differences highlighted in the first few components of
the dihedral distribution, while the Procrustes space mostly
highlight the long- vs short-nosed difference. We see in this
case that dihedral space gives qualitatively different infor-
mation, which is relevant to the evolutionary relationship of
the species.

7. Discussion

There is a large gap between the very basic level of our
mathematical understanding of the dihedral vectors of mesh
embeddings and the potential reflected in our experimental
work. Perhaps the most significant open conjecture is:

Conjecture: There is at most one set of inner face angles
consistent with an embedding of a mesh realizing a given
vector of dihedral angles.
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